

 GOVERNMENT ARTS AND SCIENCE COLLEGE
(Affiliated to Manonmaniam Sundaranar University,Tirunelveli)

KANYAKUMARI – 629 401.

STUDY MATERIAL FOR BCA

PYTHON PROGRAMMING

IV - SEMESTER

ACADEMIC YEAR 2022 - 2023

PREPARED BY

DEPARTMENT OF COMPUTER SCIENCE

STUDY MATERIAL FOR B.C.A

PYTHON PROGRAMMING

IV - SEMESTER, ACADEMIC YEAR 2022-2023

UNIT-I

INTRODUCTION TO PYTHON

Introduction to Python:

Python is a popular programming language. It was created by Guido van

Rossum, and released in 1991.

It is used for:

 Web development (server-side),

 Software development,

 Mathematics,

 System scripting.

Features of Python:

1. Simple

Python is a simple and minimalistic language. Reading a good Python

program feelsalmost like reading English language.

2. Easy to learn

Python uses very few keywords. Python has an extraordinarily simple syntax

and simple program structure.

3. Open Source

There is no need to pay for Python software. Python is FLOSS (Free/Library

and Open Source Software). Its source can be read, modified and used in

programs as desired by the programmers.

4. High level language

When you write programs in Python, you never need to bother aboutthe low-

level details such as managing the memory used by your program, etc.

5. Dynamically typed

Python provides IntelliSense. IntelliSense to make writing your code easier

and more error-free. IntelliSense option includes statement completion, which

provides quick access to valid member function or variables, including global,

via the member list. Selecting from the list inserts the member into your code.

STUDY MATERIAL FOR B.C.A

PYTHON PROGRAMMING

IV - SEMESTER, ACADEMIC YEAR 2022-2023

6. Portable

Due to its open-source nature, Python has been ported to (i.e. changed to make

it work on) many platforms. All your Python programs can work on any of

these platforms without requiring any changes at all if you are careful enough

to avoid any system-dependent features.

7. Platform independent

When a Python program is compiled using a Python compiler, it generates

byte code. Python’s byte code represents a fixed set of instructions that run on

all operating systems and hardware. Using a Python Virtual Machine

(PVM), anybody can run these byte code instructions on any computer

system. Hence, Python programs are not dependent on any specific operating

system.

8. Procedure and Object Oriented

Python supports procedure-oriented programming as well as object-oriented

programming. In procedure-oriented languages, the program is built around

procedures or functions which are nothing but reusable pieces of programs. In

object- oriented languages, the program is built around objects which combine

data and functionality.

FLAVORS OF PYTHON

Flavors of Python simply refers to the different Python compilers. These

flavors are useful to integrate various programming languages into Python. Let

us look at some of these flavors:

i. C Python

C Python is the Python compiler implemented in C programming language. In

this, Python code is internally converted into the byte code using standard C

functions. Additionally, it is possible to run and execute programs written in

C/C++ using CPython compiler.

ii. J Python

Earlier known as J Python. Jython is an implementation of the Python

programming language designed to run on the Java platform. Jython is

extremely useful because it provides the productivity features of a mature

scripting language while running on a JVM.

STUDY MATERIAL FOR B.C.A

PYTHON PROGRAMMING

IV - SEMESTER, ACADEMIC YEAR 2022-2023

iii. PyPy

This is the implementation using Python language. PyPy often runs faster than

C Python because PyPy is a just-in-time compiler while CPython is an

interpreter.

iv. Iron Python

Iron Python is an open-source implementation of the Python programming

language which is tightly integrated with the .NET Framework.

v. Ruby Python

Ruby Python is a bridge between the Ruby and Python interpreters. It embeds

a Python interpreter in the Ruby application’s process using FFI (Foreign

Function Interface).

vi. Python xy

Python(x,y) is a free scientific and engineering development software for

numerical computations, data analysis and data visualization based on Python.

vii. Stockless Python

Stack less Python is a Python programming language interpreter. In practice,

Stack less Python uses the C stack, but the stack is cleared between function

calls

viii. Anaconda Python

Anaconda is a free and open-source distribution of the Python and R

programming languages for scientific computing, that aims to simplify

package management and deployment. Package versions are managed by the

package management system conda.

Python Virtual Machine

Python Virtual Machine (PVM) is a program which provides programming

environment.

The role of PVM is to convert the byte code instructions into machine code

so the computer can execute those machine code instructions and display the

output.

Interpreter converts the byte code into machine code and sends that machine code

to the computer processor for execution.

STUDY MATERIAL FOR B.C.A

PYTHON PROGRAMMING

IV - SEMESTER, ACADEMIC YEAR 2022-2023

MEMORY

MANAGEMENT IN PYTHON

Garbage Collector

Garbage Collection is how the memory is freed when not use and how it

can be made available for other objects. Python deletes the objects that are no

longer in use. This is what we call Garbage Collection. The garbage collector

initiates its execution with the program and is activated if the reference count

drops to zero.

Static Memory Allocation – Stack

In static memory allocation, the memory is allocated at the compile time.

The Stack data structure stores the static memory.

Static int x=2;

Dynamic Memory Allocation – Heap

In dynamic memory allocation, the memory is allocated at the run time.

The Heap stores the dynamic memory. It frees up the memory space if the object

is no longer needed.

x = [0]*2

As we discussed above, the garbage collector initiates its execution with

the program and is activated if the reference count drops to zero.

Reference Count

The Python garbage collector initiates its execution with the program and

is activated if the reference count drops to zero. Let us see when the reference

count increase or decreases.

STUDY MATERIAL FOR B.C.A

PYTHON PROGRAMMING

IV - SEMESTER, ACADEMIC YEAR 2022-2023

The reference count value increase when −

 When a new name is assigned or in a dictionary or tuple, the reference

count increases its value.

 If we reassign the reference to an object, the reference counts decrease its

value.

 The reference count value decreases when −

 The value decreases when the object's reference goes out of scope.

 The value decreases when an object is deleted.

Therefore, reference counting is actually how many times other objects

reference an object. With that, The de-allocation occurs when the reference count

drops to zero.

COMPARISON BETWEEN C AND PYTHON

C-Language Python

Procedure Oriented Programming

Language

Object Oriented Programming Language

Program execute faster Program execute slower compare to C

Declaration of variable is compulsory Type declaration is NOT required.

Type discipline is static and weak Type discipline is dynamic and string

Pointer is available No pointer

Does not have exception handling Handles exceptions

It has while, for and do-while loops It has while and for loops

It has switch-case statement It does not have switch-case statement

The variable in for loop does not

incrementedautomatically.

The variable in the for loop incremented

automatically.

Memory allocation and de-allocation is

not automatic

Memory allocation and de-allocation is

done automatically by PVM.

It does not contain a garbage collection Automatic garbage collection

It supports single and multi dimensional

arrays
It supports only single dimensional

array. Implement multi dimensional array

we shoulduse third party application like

STUDY MATERIAL FOR B.C.A

PYTHON PROGRAMMING

IV - SEMESTER, ACADEMIC YEAR 2022-2023

 numpy.

The array index should be positive integer. Array index can be positive and

negative integer. Negative index

represents location from the end of the

array.

Indentation of statements in not necessary Indentation is required to represents a

blockof statements.

A semicolon is used to terminate the

Statements and comma is used to

separateexpressions / variables.

New line indicates end of the statements

and semicolon is used as an expression

separator.

It supports in-line assignment It does not supports in-line assignment.

COMPARISON BETWEEN JAVA AND PYTHON

Java Python

Pure Object-Oriented Programming

Language

Both Object-Oriented and Procedure-

Orientedprogramming language

Java programs are verbose. Python programs are concise and compact.

Declaration of variable is compulsory Type declaration is NOT required.

Type discipline is static and weak Type discipline is dynamic and string

It has while, for and do-while loops It has while and for loops

It has switch-case statement It does not have switch-case statement

The variable in for loop does not

incrementedautomatically.

The variable in the for loop incremented

automatically.

Memory allocation and de-allocation is

automatically by JVM

Memory allocation and de-allocation is

doneautomatically by PVM.

It supports single and multi-dimensional

arrays
It supports only single dimensional array.

Implement multi- dimensional array we

should

use third party application like numpy.

The array index should be positive integer. Array index can be positive and negative

integer. Negative index represents

STUDY MATERIAL FOR B.C.A

PYTHON PROGRAMMING

IV - SEMESTER, ACADEMIC YEAR 2022-2023

 location

from the end of the array.

Indentation of statements in not necessary Indentation is required to represents a

blockof statements.

A semicolon is used to terminate the

statements and comma is used to

separate

expressions / variables.

New line indicates end of the statements

and semicolon is used as an expression

separator.

The collection objects like stack, linked

list orvector but not primitive data types

like int,

float, char etc.,

The collection objects like lists and

dictionariescan store objects of

any type including

numbers and lists.

DATA TYPES IN PYTHON

A data type represents the type of data stored into a variableor memory. There

are 5 different data types are:

 None type

 Numeric type

 Sequences

 Sets

 Dictionary

None data type: The none data type represents an object that does not contain

any value. In java language it is called “NULL” object. But in Python it is called

as “none”. In Python maximum of only one ‘none’object is provided. If no

value is passed to the function, then the default value will be taken as ‘none’.

STUDY MATERIAL FOR B.C.A

PYTHON PROGRAMMING

IV - SEMESTER, ACADEMIC YEAR 2022-2023

Numeric data type

The numeric type represents numbers. There are 3 subtypes:

 int

 float

 complex

Int data type

The int data type represents integer number (Whole number). An integer

number is number without fraction. Integers can be of any length, itis only

limited by the memory available.

E.g. a=10 b=-29

Float data type

The float data type represents floating point number. Afloating point

number is a number with fraction. Floating point numbers can alsobe written in

scientific notation using exponentiation format.

A floating point number is accurate up to 15 decimal places. Integer and floating

points are separated by decimal points.

Complex data type:

A complex number is number is written in the form ofx +yj or x+yJ.

Here x is the real part and y is the imaginary part.

We can use the type() function to know which class a variable or a value

belongs to and the isinstance() function to check if an object belongs to a

particular class.

E.g.

a = 5

print(a, "is of type", type(a))b = 2.0

print(a, "is of type", type(b))

SEQUENCES

A sequence represents a group of items or elements. There aresix types of

sequences in Python. Important sequences as follows,

 str

STUDY MATERIAL FOR B.C.A

PYTHON PROGRAMMING

IV - SEMESTER, ACADEMIC YEAR 2022-2023

 list

 tuple

str data type : The str represents string data type. A string is a collection of

character enclosed in single or double quotes. Both are valid.

E.g. str=”kvn” # str is name of string variable

str=’vedish’ # str is name of string variable

Triple double quote or triple single quotes are used to embed a string in a another

string (Nested string).

str=”””This is ‘str data type’ example”””

print(str) # output is : This is ‘str data type’

example

The [] operator used to retrieve specified character from the string. Thestring

index starts from 0. Hence, str[0] indicates the 0th character in the string.

e.g str=” SSCASC Tumkur”

print(str) # it display - SSCASC Tumkur

print(str[0]) # it display - G

list data type

A List is a collection which is ordered and changeable. It allows duplicate

members. A list is similar to array. Lists are represented by square brackets [] and

the elements are separated by comma.

The main difference between a list and an array is that a list can store

different data type elements, but an array can store only one type ofelements. List

can grow dynamically in memory but the size of array is fixed and they cannot

grow dynamically.

e.g. list=[10,3.5,-20, “SSCASCT”,’TUMKUR’] # create a list

print(list) # it display all elements in the list :

10,3.5,-20,

“SSCASCT”,’TUMKUR’

STUDY MATERIAL FOR B.C.A

PYTHON PROGRAMMING

IV - SEMESTER, ACADEMIC YEAR 2022-2023

Tuple data type

A tuple is similar to list. A tuple contains group of elements which can be

different types. The elements in the tuple are separated by commas and enclosed

in parentheses (). The only difference is that tuples are immutable. Tuples once

created cannot bemodified. The tuple cannot change dynamically. That means a

tuple can be treated as read-only list.

tpl=(10,3.5,-20, “SSCASCT”,’TUMKUR’) # create a tuple print(tpl)

 # it display all elements in the tuple :

10,3.5,-20,

“SSCASCT”,’TUMKUR’

Sets

Set is an unordered collection of unique items and un-indexed. The order

of elements is not maintained in the sets. A set does not accept duplicate elements.

Set is defined by values separated by comma inside braces { }.

There are two sub types in sets:

 Set data type

 Frozen Set data type

Set data type: To create a set, we should enter the elements separated bycomma

inside a curly brace.

e.g. s = {10,30, 5, 30,50}

print(s) # it display : {10,5,30,50}

In the above example, it displays un-orderly and repeated elements onlyonce,

because set is unordered collection and unique items.

We can use set() to create a set asK=set(“kvn”)

Print(K) # it display : “kvn”

Frozen set data type

Frozen set is just an immutable version of a Python set object. While

elements of a set can be modified at any time, an elementof frozen set remains

the same after creation. Due to this, frozen sets can beused as key in Dictionary

or as element of another set.

STUDY MATERIAL FOR B.C.A

PYTHON PROGRAMMING

IV - SEMESTER, ACADEMIC YEAR 2022-2023

Dictionary: A dictionary is an unordered collection, changeable and indexed.

In Python dictionaries are written with curly brackets, and theyhave keys and

values. String operations:

OPERATORS

 Operators are special symbols which represents computation. They are

applied on operand(s), which can be values or variables.

 Same operator can behave differentlyon different data types. Operators

when applied on operands form an expression.

 Operators are categorized as Arithmetic, Relational, Logical and

Assignment. Value and variables when used with operator are known as

operands.

1. Arithmetic Operators:

Symbol Description Example-1 Example-2

+ Addition >>> 5 + 6 >>>’SSCASCT’+’B

11
CA’

 SSCASCTBCA

- Subtraction >>>10-5 >>>5 – 6

 5 -1

* Multiplication >>> 5*630 >>>’SSCASCT’ * 2

SSCASCTSSCASCT

/ Division >>> 10 / 5 >>>5 /2.0

 2 2.5

% Remainder / Modulo >>> 5 % 2 >>>15%5

 1 0

** Exponentiation >>> 2**38 >>>2**8256

// Integer Division >>> 7.0 // 2

3.0

>>>3//21

STUDY MATERIAL FOR B.C.A

PYTHON PROGRAMMING

IV - SEMESTER, ACADEMIC YEAR 2022-2023

2. Relational Operators:

Symbol Description Example-1 Example-2

< Less than >>> 7<10

True

>>> ‘SSCASCT’

<’BCA’

False

> Greater Than >>> 7 >10

False

>>>’SSCASCT’ >

‘BCA’

True

<= Less than or equal to >>> 7<=10

True

>>>’SSCASCT’

<=’BCA’

False

>= Greater than or equal to >>> 7>=10

False

>>>’SSCASCT’>=’BC

A’

True

!= , <> Not equal to >>> 7!=10

True

>>>’SSCASCT’!=

‘sscasct’

True

== Equal to >>> 7==10

False

>>>’SSCASC’

==’SSCASC’

True

3. Logical Operators:

Symbol Description Example-2

or If any one of the operand is true, then

condition becomes TRUE

>>> 7<=10 or 7 ==10

True

and If both the operands are true, then the

condition becomes TRUE

>>>7<10 and 7 >20

False

STUDY MATERIAL FOR B.C.A

PYTHON PROGRAMMING

IV - SEMESTER, ACADEMIC YEAR 2022-2023

not Reverse the state of operand / condition >>> not 7<10False

4. Assignment Operator:

Symbol Description Example-1

= Assigned values from right side >>> x=10
 operands

 to left variable. 10

 the left operand

Bitwise Operator: a bit is the smallest unit of data storage and it can have only

one of the two values, 0 and 1. Bitwise operators works on bits and perform bit-

by-bit operation.

Symbol Description Example

| Performs binary OR operation 5 | 3 gives 7

& Performs binary AND operation 5 & 3 gives 1

~ Performs binary XOR operation 5 ^ 3 gives 6

^ Performs binary one's complement operation ~5 gives -6

<< Left shift operator: The left-hand side

operand bit is

moved left by the number specified on the

right-handside (Multiply by 2)

0010 << 2 gives 8

>> Left shift operator: The left-hand side

operand bit ismoved left by the number

specified on the right-hand side (Divided by 2)

100 << 2 gives 1

STUDY MATERIAL FOR B.C.A

PYTHON PROGRAMMING

IV - SEMESTER, ACADEMIC YEAR 2022-2023

Membership operators

Python has membership operators, which test for membership in a

sequence, such as strings, lists or tuples. There are two membership operators are:

Symbol Description Example

in Returns True if the specified operand is found

in thesequence

>>> x = [1,2,4,6,8]

>>> 3 in xfalse

Not in Returns True if the specified operand is found

in thesequence

>>> x = [1,2,4,6,8]

>>> 3 not in xtrue

1. Identity operator: Identity operators compare the memory locations of

two objects. There are two Identity operators are:

Symbol Description Example Example

is Returns True if two variables point

to the same object and False,

otherwise

>>>X=10

>>>Y=10

>>> X is Y

true

>>> x=[1,2,3]

>>> y=[1,2,3]

>>> x is yfalse

is not Returns False if two variables point

to thesame object and True, otherwise

>>>X=10

>>>Y=10

>>> X is not

Yfalse

>>> x=[1,2,3]

>>> y=[1,2,3]

>>> x is not y

true

STUDY MATERIAL FOR B.C.A

PYTHON PROGRAMMING

IV - SEMESTER, ACADEMIC YEAR 2022-2023

UNIT-II

INPUT AND OUTPUT:

CONTROL STATEMENTS

If Statements

One-way if statement executes the statements if the condition is

true. The syntax fora one-way if statement is:

if boolean-expression:

Statement # Note that the statement(s) must be indented

 The reserved word if begins a if statement.

 The condition is a Boolean expression that determines whether or

not the body will beexecuted. A colon (:) must follow the

condition.

 The block is a block of one or more statements to be executed if

the condition is true.

The statements within the block must all be indented the same

number of spaces from the left. The block within an Example: To

demonstrate simple if

#Get two integers from the user

Dividend = int(input('Please enter the number to divide: '))

Divisor = int(input('Please enter dividend: ')) # If possible, divide them and report

the resultif divisor != 0:

Quotient = dividend/divisor

Print(dividend, '/', divisor, "=", quotient)print('Program finished')

Output

Please enter the number to divide: 4Please enter dividend: 5

4 / 5 = 0.8

Program finished

>>>

STUDY MATERIAL FOR B.C.A

PYTHON PROGRAMMING

IV - SEMESTER, ACADEMIC YEAR 2022-2023

If-else statements

A two-way if-else statement decides which statements to execute based

on whetherthe condition is true or false.

The syntax for a two-way if-else statement:

if boolean-expression:

Statement(s) #for-the-true-case ,the statement(s) must be indented

Else: statement(s) #for-the-false-case

Example: to demonstrate if else

Percent=float(input("enter percentage"))if percent >= 90.0:

Print ("congratulations, you got an a") print ("you are doing well in this class")

Else:

Print ("you did not get an a")

Print ("see you in class next week")

Nested if statements.

A series of tests can written using nested if statements.

Example: Nestedif percent=float(input("Enter Percentage")) if (percent >=

90.00):

Print ('congratuations, you got an A')else:

If (percent >= 80.0): print ('you got a B')

Else:

If (percent >= 70.0): print ('you got a C')

Else:

Print ('your grade is less than a C')

If_elif_else Statement

In Python we can define a series of conditionals (multiple

alternatives) using if for the first one, elif for the rest, up until the final

(optional) else for anything not caught by the other conditionals.

STUDY MATERIAL FOR B.C.A

PYTHON PROGRAMMING

IV - SEMESTER, ACADEMIC YEAR 2022-2023

i = initialValue # Initialize loop-control

variable

while i <

endValue:#

Loop body

Example:If_elif_else score=int(input("Enter Score"))if score >= 90.0:

grade = 'A' elif score >= 80.0:

grade = 'B' elif score >= 70.0:

grade = 'C' elif score >= 60.0:

grade = 'D'else:

grade = 'F' print("Grade=",grade)

Using else if instead of elif will trigger a syntax error and is not

allowed.

Loops

It is one of the most basic functions in programming; loops are

an important in every programming language. Loops enable is to

execute a statement repeatedly which are referred to as iterations. (A

loop is used to tell a program to execute statements repeatedly).

The simplest type of loop is a while loop.

The syntax for the while loop is:

while loop-continuation-condition:# Loop body

Statement(s)# Note that the statement(s) must be indented

Example1: To demonstrate while count = 0#Program to print “Programming

is fun!” for 10 times

while count < 10: print("Programming is fun!")count = count + 1

The for Loop

A for loop iterates through each statements in a sequence for

exactly know many times the loop body needs to be executed, so a

control variable can be used to count the executions. A loop of this type

is called a counter-controlled loop. In general, the loop can be written

STUDY MATERIAL FOR B.C.A

PYTHON PROGRAMMING

IV - SEMESTER, ACADEMIC YEAR 2022-2023

as follows:

for i in range(initialValue, endValue):

Loop body #Note that the statement(s) must be indented

In general, the syntax of a for loop is:

for var in sequence:# Loop body

The function range(a, b) returns the sequence of integers a, a + 1, ...,

b-2, and b- 1. The range function has two more versions. You can

also use range(a) or range(a, b,k). range(a) is the same as range(0,

a). k is used as step value in range(a, b, k). The first number in the

sequence is a. Each successive number in the sequence willincrease

by the step value k. b is the limit. The last number in the sequence

must be less than b.

Break and Continue in Loops

break statement:

When a break statement executes inside a loop, control flow comes out of

the loop immediately:

Example:to demonstrate break

i = 0

while i < 7:

print(i) if i == 4:

print("Breaking from loop")

break

i += 1

The loop conditional will not be evaluated after the break

statement is executed. Note that break statements are only allowed

inside loops. A break statement inside a function cannot be used to

terminate loops that called that function.

Executing the following prints every digit until number 4 when

the break statement is met and the loop stops:

Output

01234

STUDY MATERIAL FOR B.C.A

PYTHON PROGRAMMING

IV - SEMESTER, ACADEMIC YEAR 2022-2023

Breaking from loop

Break statements can also be used inside for loops, the other

looping constructprovided by Python:

Example:

for i in (0, 1, 2, 3, 4):print(i)

if i == 2:

break

Executing this loop now prints:

012

Note that 3 and 4 are not printed since the loop has ended.

Continue statement

A continue statement will skip to the next iteration of the loop

bypassing the rest of the current block but continuing the loop.

Continue can only used inside loops:

Example to demonstrate continue

for i in (0, 1, 2, 3, 4, 5):if i == 2 or i == 4:

continue

print(i)

Note that 2 and 4 aren't printed, this is because continue goes to

the nextiteration instead of continuing on to print(i) when i == 2 or i

== 4.

ARRAYS

An array is a data structure that stores values of same data type.

In Python, this is the main difference between arrays and lists.

While python lists can contain values corresponding to different

data types, arrays in python can only contain values corresponding to

same data type.

To use arrays in python language, you need to import the standard

array module. This is because array is not a fundamental data type like

strings, integer etc. Here is how you can import array module in

python:

STUDY MATERIAL FOR B.C.A

PYTHON PROGRAMMING

IV - SEMESTER, ACADEMIC YEAR 2022-2023

From array import *

Once you have imported the array module, you can declare an array.

Here is how you do it:

Array Identifier Name = array(type code, [Initializers])

Type code Details

B Represents signed integer of size 1 byte

B Represents unsigned integer of size 1 byte

C Represents character of size 1 byte

u Represents unicode character of size 2 bytes

h Represents signed integer of size 2 bytes

H Represents unsigned integer of size 2 bytes

i Represents signed integer of size 2 bytes

I Represents unsigned integer of size 2 bytes

w Represents unicode character of size 4 bytes

1 Represents signed integer of size 4 bytes

L Represents unsigned integer of size 4 bytes

f Represents floating point of size 4 bytes

D Represents floating point of size 8 bytes

Example of an array containing 5 integers:

from array import *

my_array = array('i', [1,2,3,4,5])for i in my_array:

print(i) #output:1,2,3,4,5

Some built-in array methods:

Append any value to the array using append() method my_array =

array('i', [1,2,3,4,5]) my_array.append(6)

STUDY MATERIAL FOR B.C.A

PYTHON PROGRAMMING

IV - SEMESTER, ACADEMIC YEAR 2022-2023

array('i', [1, 2, 3, 4, 5, 6])

Note that the value 6 was appended to the existing array values.

Insert value in an array using insert() method my_array = array('i',

[1,2,3,4,5])my_array.insert(0,0)

#array('i', [0, 1, 2, 3, 4, 5])

In the above example, the value 0 was inserted at index 0. Note that

the first argumentis the index while second argument is the value.

Extend python array using extend() method my_array = array('i', [1,2,3,4,5])

my_extnd_array = array('i', [7,8,9,10])my_array.extend(my_extnd_array)

array('i', [1, 2, 3, 4, 5, 7, 8, 9, 10])

We see that the array my_array was extended with values from

my_extnd_array.

Remove any array element using remove() my_array = array('i', [1,2,3,4,5])

my_array.remove(4)

array('i', [1, 2, 3, 5])

We see that the element 4 was removed from the array.

Remove last array element using pop() method

pop removes the last element from the array.

my_array = array('i', [1,2,3,4,5])

my_array.pop()

array('i', [1, 2, 3, 4])

So we see that the last element (5) was popped out of array.

Fetch any element through its index using index()

index() returns first index of the matching value. Remember that arrays

are zero- indexed.

my_array = array('i', [1,2,3,4,5])print(my_array.index(5))

#output: 5

my_array = array('i', [1,2,3,3,5])print(my_array.index(3))

STUDY MATERIAL FOR B.C.A

PYTHON PROGRAMMING

IV - SEMESTER, ACADEMIC YEAR 2022-2023

#output: 3

Note in that second example that only one index was returned, even

though the value exists twice in the array

Reverse a python array using reverse() method

The reverse() method reverses the array. my_array = array('i', [1,2,3,4,5])

my_array.reverse()

array('i', [5, 4, 3, 2, 1])

Sort a python array using sort() method

from array import * my_array = [1,20,13,4,5]my_array.sort() print(my_array)

#output:1,4,5,13,20

Multi-Dimensional Array

An array containing more than one row and column is called

multidimensional array. It is also called combination of several 1D

arrays.2D array is also considered as matrix.

A=array([1,2,3,4])# create 1D array with 1 row B=array([1,2,3,4],[5,6,7,8])

create 2D array with 2 row

Example:2D_array

from numpy import* a=array([[1,2,3],[4,5,6],[7,8,9]])

print(a)#Prints 2D array as rows print("2D Array Element wise Printing")for i in

range(len(a)):

for j in range(len(a[i])):

print(a[i][j],end=' ')#Prints array element wiseprint(end='\n')

print(end='\n')

#2D array As matrix by using matrix funprint("Matrix printing")

a=matrix('1 2 3; 4 5 6 ; 7 8 9')print(a)

Output

[[1 2 3]

[4 5 6]

STUDY MATERIAL FOR B.C.A

PYTHON PROGRAMMING

IV - SEMESTER, ACADEMIC YEAR 2022-2023

[7 8 9]]

2D Array Element wise Printing1 2 3

4 5 6

7 8 9

Matrix printing[[1 2 3]

[4 5 6]

[7 8 9]]

>>>

Matrix in Numpy

In python we can show matrices as 2D array. In numpy, a matrix is

considered as specialized 2D array. It has lot of built in operators on 2D

matrices. In numpy, matrix is created using the following syntax.

Matrix_name=matrix(2D array or string)

Eg. a=matrix('1 2 3;4 5 6;7 8 8')

Matrix addition, multiplication and division.

We can use arithmetic operators like +, -,* ,/ to perform different

operations onmatrices.

Example: Matrix_Operation

from numpy import* a=matrix('4 4 4;4 4 4;4 4 4')

b=matrix('2 2 2;2 2 2;2 2 2')print("Printing A matrix") print(a)

print("Printing B matrix")print(b)

print("Printing Addition of two matrix")c=a+b #matrix addition

print(c)

print("Printing Multplication of two matrix")c=a*b #matrix addition

print(c)

print("Printing Division of two matrix")c=a/b #matrix addition

print(c)

Output

Printing A matrix[[4 4 4]

STUDY MATERIAL FOR B.C.A

PYTHON PROGRAMMING

IV - SEMESTER, ACADEMIC YEAR 2022-2023

[4 4 4]

[4 4 4]]

Printing B matrix[[2 2 2]

[2 2 2]

[2 2 2]]

Printing Addition of two matrix

[[6 6 6]

[6 6 6]

[6 6 6]]

Printing Multplication of two matrix[[24 24 24]

[24 24 24]

[24 24 24]]

Printing Division of two matrix[[2. 2. 2.]

[2. 2. 2.]

[2. 2. 2.]]

>>>

Enter rows,col: 2 2

Enter matrix elements:1 2 3 4The original matrix

[[1 2]

[3 4]]

Printing Transpose of matrix[[1 3]

[2 4]]

>>>

STUDY MATERIAL FOR B.C.A

PYTHON PROGRAMMING

IV - SEMESTER, ACADEMIC YEAR 2022-2023

Slicing String

UNIT-III

STRING AND CHARACTERS

Python slicing is about obtaining a sub-string from the given string by

slicing it respectively from start to end.

How String slicing in Python works

For understanding slicing we will use different methods, here we will

cover 2 methods of string slicing, the one is using the in-build slice() method

and another using the [:] array slice. String slicing in Python is about obtaining

a sub-string from the given string by slicing it respectively from start to end.

Python slicing can be done in two ways:

 Using a slice() method

 Using array slicing [: :] method

Index tracker for positive and negative index

String indexing and slicing in python. Here, the Negative comes into

consideration when tracking the string in reverse.

Method 1: Using slice() method

The slice() constructor creates a slice object representing the set of indices

specified by range(start, stop, step).

https://www.geeksforgeeks.org/python-strings/
https://www.geeksforgeeks.org/python-slice-function/

STUDY MATERIAL FOR B.C.A

PYTHON PROGRAMMING

IV - SEMESTER, ACADEMIC YEAR 2022-2023

Syntax:

 slice(stop)

 slice(start, stop, step)

Parameters: start: Starting index where the slicing of object

starts. stop: Ending index where the slicing of object stops. step: It is an

optional argument that determines the increment between each index for

slicing. Return Type: Returns a sliced object containing elements in the given

range only.

Example:

Python program to demonstrate

string slicing

String slicing

String = 'ASTRING'

Using slice constructor

s1 = slice(3)

s2 = slice(1, 5, 2)

s3 = slice(-1, -12, -2)

print(& quot String slicing & quot)

print(String[s1])

print(String[s2])

print(String[s3])

Output:

String slicing

AST

SR

GITA

STUDY MATERIAL FOR B.C.A

PYTHON PROGRAMMING

IV - SEMESTER, ACADEMIC YEAR 2022-2023

Python String Functions

The Python String Functions which we are going to discuss in this article are as

follows:

 Capitalize() function

 Lower() function

 Title() function

 Casefold() function

 Upper() function

 Count() function

 Find() function

 Replace() function

 Swapcase() function

 Join() function

FUNCTIONS

 A function is a collection of statements grouped together that

performs an operation.

 A function is a way of packaging a group of statements for later

execution.

The function is given a name. The name then becomes a short-

hand to describe the process. Once defined, the user can use it by

the name, and not by the steps involved. Once again, we have

separated the “what” from the“how”, i.e. abstraction.

Functions in any programming language can fall into two broad

categories:

 Built-in functions

They are predefined and customized, by programming languages and

each serves aspecific purpose.

 User-defined functions

They are defined by users as per their programming requirement.

STUDY MATERIAL FOR B.C.A

PYTHON PROGRAMMING

IV - SEMESTER, ACADEMIC YEAR 2022-2023

There are two sides to every Python function:

Function definition. The definition of a function contains the code

that determines the function’s behaviour.

Function call. A function is used within a program via a function

invocation.

Defining a Function

A function definition consists of the function’s name, parameters,

and body.

The syntax for defining a function is as follows:

def function Name(list of parameters):

Statements # Note that the statement(s) must be indentedreturn

 A function contains a header and body. The header begins with

the def keyword, followed by the function’s name known as the

identifier of the function and parameters, and ends with a colon.

 The variables in the function header are known as formal

parameters or simply parameters. When a function is invoked,

you pass a value to the parameter. This value is referred to as

an actual parameter or argument. Parameters are optional; that is,

a function may not have any parameters.

 Statement(s) – also known as the function body – are a nonempty

sequence of statements executed each time the function is called.

This means a function body cannot be empty, just like any indented

block.

 Some functions return a value, while other functions perform

desired operations without returning a value. If a function returns

a value, it is called a value- returning function.

Calling a Function

Calling a function executes the code in the function. In a

function’s definition, you define what it is to do. To use a function,

you have to call or invoke it. The programthat calls the function is

called a caller. There are two ways to call a function, depending on

whether or not it returns a value. If the function returns a value, a call

to that function is usually treated as a value.

STUDY MATERIAL FOR B.C.A

PYTHON PROGRAMMING

IV - SEMESTER, ACADEMIC YEAR 2022-2023

For example,

larger = max(3, 4)

Calls max(3, 4) and assigns the result of the function to the variable

larger.

Another example of a call that is treated as a value is

print(max(3, 4))

This prints the return value of the function call max (3, 4).

RECURSION

A recursive function is one that invokes itself. Or A recursive

function is afunction that calls itself in its definition.

For example the mathematical function, factorial, defined by factorial

(n) = n*(n-1)*(n-2)*...*3*2*1. can be programmed as

def factorial(n):

#n here should be an integer

if n == 0:return 1 else:

return n*factorial(n-1)

Any recursive function can be divided into two parts.

First, there must be one or more base cases, to solve the simplest

case, which is referred to as the base case or the stopping condition

Next, recursive cases, here function is called with different

arguments, which are referred to as a recursive call. These are values that

STUDY MATERIAL FOR B.C.A

PYTHON PROGRAMMING

IV - SEMESTER, ACADEMIC YEAR 2022-2023

are handled by “reducing” the problem to a “simpler” problem of the

same form.

Example: To find factorial using Recursion

def main():

n=int(input("Enter a nonnegative integer: ")) print("Factorial of", n,

"is",factorial(n)) print(" 0! = ", factorial(0))

print(" 1! = ", factorial(1))

print(" 5! = ", factorial(6))

Return the factorial for the specified numberdef factorial(n):

if n == 0: # Base casereturn 1

else:

return n*factorial(n-1) # Recursive callmain()# call the main

Output:

Enter a nonnegative integer: 5

Factorial of 5 is 120

0! = 1

1! = 1

5! = 720

Python Tuples

A collection of ordered and immutable objects is known as a tuple. Tuples

and lists are similar as they both are sequences. Though, tuples and lists are

different because we cannot modify tuples, although we can modify lists after

creating them, and also because we use parentheses to create tuples while we use

square brackets to create lists.

Placing different values separated by commas and enclosed in parentheses forms

a tuple. For instance,

Example

1. tuple_1 = ("Python", "tuples", "immutable", "object")

2. tuple_2 = (23, 42, 12, 53, 64)

STUDY MATERIAL FOR B.C.A

PYTHON PROGRAMMING

IV - SEMESTER, ACADEMIC YEAR 2022-2023

3. tuple_3 = "Python", "Tuples", "Ordered", "Collection"

We represent an empty tuple by two parentheses enclosing nothing. Empty

tuple = ()

We need to add a comma after the element to create a tuple of a single element

Tuple_1 = (50,)

Tuple indices begin at 0, and similar to strings, we can slice them, concatenate

them, and perform other operations.

Creating a Tuple

All the objects (elements) must be enclosed in parenthesis (), each

separated by a comma, to form a tuple. Although using parenthesis is not required,

it is recommended to do so.

Whatever the number of objects, even of various data types, can be

included in a tuple (dictionary, string, float, list, etc.).

 # Python program to show how to create a tuple

 # Creating an empty tuple

 empty_tuple = ()

 print("Empty tuple: ", empty_tuple)

 # Creating tuple having integers

 int_tuple = (4, 6, 8, 10, 12, 14)

 print("Tuple with integers: ", int_tuple)

 # Creating a tuple having objects of different data types

 mixed_tuple = (4, "Python", 9.3)

 print("Tuple with different data types: ", mixed_tuple)

 # Creating a nested tuple

 nested_tuple = ("Python", {4: 5, 6: 2, 8:2}, (5, 3, 5, 6))

 print("A nested tuple: ", nested_tuple)

STUDY MATERIAL FOR B.C.A

PYTHON PROGRAMMING

IV - SEMESTER, ACADEMIC YEAR 2022-2023

Output:

Parentheses are not mandated to build tuples. Tuple packing is the term for this.

Tuple Operations

Like string, tuple objects are also a sequence. Hence, the operators used with

strings are also available for the tuple.

Operator Example

The + operator returns a tuple containing all the >>> t1=(1,2,3)

elements of the first and the second tuple object. >>> t2=(4,5,6)

 >>> t1+t2

 (1, 2, 3, 4, 5, 6)

 >>> t2+(7,)

 (4, 5, 6, 7)

The * operator Concatenates multiple copies of

the same tuple.

>>> t1=(1,2,3)

>>> t1*4

(1, 2, 3, 1, 2, 3,

1, 2, 3, 1, 2, 3)

The [] operator Returns the item at the given >>>

index. A negative index counts the position from
t1=(1,2,3,4,5,6)

the right side.
>>> t1[3]

 4

 >>> t1[-2]

 5

Empty tuple: ()

Tuple with integers: (4, 6, 8, 10, 12, 14)

Tuple with different data types: (4, 'Python', 9.3)

A nested tuple: ('Python', {4: 5, 6: 2, 8: 2}, (5, 3, 5, 6))

STUDY MATERIAL FOR B.C.A

PYTHON PROGRAMMING

IV - SEMESTER, ACADEMIC YEAR 2022-2023

Operator Example

The [:] operator returns the items in the range

specified by two index operands separated

by the : symbol. If the first operand is omitted,

the range starts from zero. If the second

operand is omitted, the range goes up to

the end of the tuple.

>>>

t1=(1,2,3,4,5,6)

>>> t1[1:3]

(2, 3)

>>> t1[3:]

(4, 5, 6)

>>> t1[:3]

(1, 2, 3)

The in operator returns true if an item exists in the given tuple. >>>

t1=(1,2,3,4,5,6)

>>> 5 in t1

True

>>> 10 in t1

False

The not in operator returns true if an item does not exist in the

given tuple.

>>>

t1=(1,2,3,4,5,6)

>>> 4 not in t1

False

>>> 10 not in t1

True

STUDY MATERIAL FOR B.C.A

PYTHON PROGRAMMING

IV - SEMESTER, ACADEMIC YEAR 2022-2023

Page 35 of 53

UNIT-IV

DICTIONARIES:

A dictionary is a collection which is unordered, changeable and indexed. In

pythondictionaries are written with curly brackets, and they have keys and values.

 Key-value pairs

 Unordered

We can construct or create dictionary like:

X={1:’A’,2:’B’,3:’c’}

X=dict([(‘a’,3) (‘b’,4)]X=dict(‘A’=1,’B’ =2)

Example:

>>> dict1 = {"brand":"mrcet","model":"college","year":2004}

>>> dict1

{'brand': 'mrcet', 'model': 'college', 'year': 2004}

Operations and methods:

Methods that are available with dictionary are tabulated below. Some of

them have alreadybeen used in the above examples.

Method Description

Clear() Remove all items form the dictionary.

Copy() Return a shallow copy of the dictionary.

Fromkeys(seq[, v])

Return a new dictionary with keys from seq and

value equal to v (defaults to None).

Get(key[,d])

Return the value of key. If key doesnot exit,return d

(defaults to None).

https://www.programiz.com/python-programming/methods/dictionary/clear
https://www.programiz.com/python-programming/methods/dictionary/copy
https://www.programiz.com/python-programming/methods/dictionary/fromkeys
https://www.programiz.com/python-programming/methods/dictionary/get

STUDY MATERIAL FOR B.C.A

PYTHON PROGRAMMING

IV - SEMESTER, ACADEMIC YEAR 2022-2023

Page 36 of 53

Items()

Return a new view of the dictionary's items(key,

value).

Keys() Return a new view of the dictionary's keys.

Pop(key[,d])

Remove the item with key and return its valueor d

if key is not found. If d is not provided and key is

not found, raises KeyError.

Popitem()

Remove and return an arbitary item (key, value).

Raises KeyError if the dictionary isempty.

Setdefault(key[,d])

If key is in the dictionary, return its value. Ifnot,

insert key with a value of d and

return d (defaults to None).

Update([other])

Update the dictionary with the key/value pairsfrom

other, overwriting existing keys.

Values() Return a new view of the dictionary's values

Copy() Return a shallow copy of the dictionary.

Fromkeys(seq[, v])

Return a new dictionary with keys from seq and

value equal to v (defaults to None).

Get(key[,d])

Return the value of key. If key doesnot exit,return d

(defaults to None).

Items()

Return a new view of the dictionary's items(key,

value).

Keys() Return a new view of the dictionary's keys.

https://www.programiz.com/python-programming/methods/dictionary/items
https://www.programiz.com/python-programming/methods/dictionary/keys
https://www.programiz.com/python-programming/methods/dictionary/pop
https://www.programiz.com/python-programming/methods/dictionary/popitem
https://www.programiz.com/python-programming/methods/dictionary/setdefault
https://www.programiz.com/python-programming/methods/dictionary/update
https://www.programiz.com/python-programming/methods/dictionary/values
https://www.programiz.com/python-programming/methods/dictionary/copy
https://www.programiz.com/python-programming/methods/dictionary/fromkeys
https://www.programiz.com/python-programming/methods/dictionary/get
https://www.programiz.com/python-programming/methods/dictionary/items
https://www.programiz.com/python-programming/methods/dictionary/keys

STUDY MATERIAL FOR B.C.A

PYTHON PROGRAMMING

IV - SEMESTER, ACADEMIC YEAR 2022-2023

Page 37 of 53

Pop(key[,d])

Remove the item with key and return its valueor d

if key is not found. If d is not provided and key is

not found, raises KeyError.

Popitem()

Remove and return an arbitary item (key, value).

Raises KeyError if the dictionary isempty.

Setdefault(key[,d])

If key is in the dictionary, return its value. Ifnot,

insert key with a value of d and

return d (defaults to None).

Update([other])

Update the dictionary with the key/value pairsfrom

other, overwriting existing keys.

Values() Return a new view of the dictionary's values

PASSING DICTIONARY TO FUNCTIONS

A dictionary in Python is a collection of data which is unordered and

mutable. Unlike, numeric indices used by lists, a dictionary uses the key as an

index for a specific value. It can be used to store unrelated data types but data

that is related as a real-world entity. The keys themselves are employed for using

a specific value.

Passing Dictionary as an argument

In Python, everything is an object, so the dictionary can be passed as an

argument to a function like other variables are passed.

Example:

https://www.programiz.com/python-programming/methods/dictionary/pop
https://www.programiz.com/python-programming/methods/dictionary/popitem
https://www.programiz.com/python-programming/methods/dictionary/setdefault
https://www.programiz.com/python-programming/methods/dictionary/update
https://www.programiz.com/python-programming/methods/dictionary/values

STUDY MATERIAL FOR B.C.A

PYTHON PROGRAMMING

IV - SEMESTER, ACADEMIC YEAR 2022-2023

Page 38 of 53

Python program to demonstrate

passing dictionary as argument

A function that takes dictionary

as an argument

def func(d):

for key in d:

print("key:", key, "Value:", d[key])

Driver's code

D = {'a':1, 'b':2, 'c':3}

func(D)

Output:

key: b Value: 2

key: a Value: 1

key: c Value: 3

Passing Dictionary as kwargs

“kwargs” stands for keyword arguments. It is used for passing advanced

data objects like dictionaries to a function because in such functions one doesn’t

have a clue about the number of arguments, hence data passed is be dealt

properly by adding “**” to the passing type.

Example 1:

Python program to demonstrate

passing dictionary as kwargs

def display(**name):

print (name["fname"]+" "+name["mname"]+" "+name["lname"])

STUDY MATERIAL FOR B.C.A

PYTHON PROGRAMMING

IV - SEMESTER, ACADEMIC YEAR 2022-2023

Page 39 of 53

def main():

passing dictionary key-value

pair as arguments

display(fname ="John",

mname ="F.",

lname ="Kennedy")

Driver's code

main()

Output:

John F. Kennedy

Errors and Exceptions:

Python Errors and Built-in Exceptions: Python (interpreter) raises exceptions

when it encounters errors. When writing a program, we, more often than not,

willencounter errors. Error caused by not following the proper structure (syntax)

of the languageis called syntax error or parsing error

Zero Division Error:

Zero Division Error in Python indicates that the second argument used in

a division (or modulo) operation was zero.

Overflow Error:

Overflow Error in Python indicates that an arithmetic operation has

exceeded the limits ofthe current Python runtime. This is typically due to

excessively large float values, as integer values that are too big will opt to raise

memory errors instead.

Import Error:

It is raised when you try to import a module which does not exist. This may

happen if you made a typing mistake in the module name or the module doesn't

exist in its standard path. In the example below, a module named

"non_existing_module" is being imported but it doesn't exist, hence an import

error exception is raised.

Index Error:

STUDY MATERIAL FOR B.C.A

PYTHON PROGRAMMING

IV - SEMESTER, ACADEMIC YEAR 2022-2023

Page 40 of 53

An Index Error exception is raised when you refer a sequence which is out

of range. In the example below, the list abc contains only 3 entries, but the

4th index is being accessed,which will result an Index Error exception.

Type Error:

When two unrelated type of objects are combined, Type Error exception is

raised. In example below, an int and a string is added, which will result in Type

Error exception.

Indentation Error:

Unexpected indent. As mentioned in the "expected an indented block"

section, Python not only insists on indentation, it insists on consistent indentation.

You are free to choose the number of spaces of indentation to use, but you then

need to stick with it.

Syntax errors:

These are the most basic type of error. They arise when the Python parser

is unable to understand a line of code. Syntax errors are almost always fatal, i.e.

there is almost never a way to successfully execute a piece of code containing

syntax errors.

Run-time error:

A run-time error happens when Python understands what you are saying,

but runs into trouble when following your instructions.

Key Error:

Python raises a KeyError whenever a dict() object is requested (using the

format a = adict[key]) and the key is not in the dictionary.

Value Error:

In Python, a value is the information that is stored within a certain object.

To encounter a ValueError in Python means that is a problem with the content of

the object you tried to assign the value to.

Python has many built-in exceptions

Which forces your program to output an error when something in it goes

wrong. In Python, users can define such exceptions by creating a new class. This

exception class has to be derived, either directly or indirectly, from Exception

class.

Different types of exceptions:

 Array Index Out Of Bound Exception.

STUDY MATERIAL FOR B.C.A

PYTHON PROGRAMMING

IV - SEMESTER, ACADEMIC YEAR 2022-2023

Page 41 of 53

 Class Not Found Exception.

 File Not Found Exception.

 IO Exception.

 Interrupted Exception.

 No Such Field Exception.

 No Such Method Exception

Handling Exceptions:

The cause of an exception is often external to the program itself. For

example, an incorrect input, a malfunctioning IO device etc. Because the program

abruptly terminates on encountering an exception, it may cause damage to system

resources, such as files. Hence, the exceptions should be properly handled so that

an abrupt termination of the program is prevented.

Python uses try and except keywords to handle exceptions. Both keywords are

followed by indented blocks.

Syntax:

try:

#statements in try blockexcept :

#executed when error in try blockTypically we see, most of the times

 Syntactical errors (wrong spelling, colon (:) missing ….), At developer

level and compile level it gives errors.

 Logical errors (2+2=4, instead if we get output as 3 i.e., wrong output

…..,),

As a developer we test the application, during that time logical error may

obtained.

Run time error (In this case, if the user doesn’t know to give input, 5/6 is ok

but ifthe user say 6 and 0 i.e.,6/0 (shows error a number cannot be divided by

zero))

This is not easy compared to the above two errors because it is not done

by thesystem, it is (mistake) done by the user.

The things we need to observe are:

 You should be able to understand the mistakes; the error might be done by

user, DB connection or server.

STUDY MATERIAL FOR B.C.A

PYTHON PROGRAMMING

IV - SEMESTER, ACADEMIC YEAR 2022-2023

Page 42 of 53

 Whenever there is an error execution should not stop. Ex: Banking

Transaction

 The aim is execution should not stop even though an error occur

FILES

A file is some information or data which stays in the computer storage

devices. Python givesyou easy ways to manipulate these files. Generally files

divide in two categories, text file and binary file. Text files are simple text where

as the binary files contain binarydata which is only readable by computer.

Text files: In this type of file, Each line of text is terminated with a special

character called EOL (End of Line), which is the new line character (‘\n’) in

python by default.

Binary files: In this type of file, there is no terminator for a line and the data is

stored after converting it into machine understandable binary language.

Text files:

We can create the text files by using the syntax:

Variable name=open (“file.txt”, file mode)For ex: f= open ("hello.txt","w+")

 We declared the variable f to open a file named hello.txt. Open takes 2

arguments, thefile that we want to open and a string that represents the

kinds of permission or operation we want to do on the file

 Here we used "w" letter in our argument, which indicates write and the plus

sign that means it will create a file if it does not exist in library

 The available option beside "w" are "r" for read and "a" for append

and plus signmeans if it is not there then create it

File Modes in Python:

Description Mode

STUDY MATERIAL FOR B.C.A

PYTHON PROGRAMMING

IV - SEMESTER, ACADEMIC YEAR 2022-2023

Page 43 of 53

'r' This is the default mode. It Opens file for reading.

'w' This Mode Opens file for writing.

If file does not exist, it creates a new file.If file exists it truncates

the file.

'x' Creates a new file. If file already exists, the operation fails.

'a' Open file in append mode.

If file does not exist, it creates a new file.

't' This is the default mode. It opens in text mode.

'b' This opens in binary mode.

'+' This will open a file for reading and writing (updating)

Zipping and unzipping a file

In Python, the module zipfile contains ZipFile class that helps us to zip or

unzip a file contents. For example, to zip the files, we should first pass the zip file

name in write mode with an attribute ZIP_DEFLATED to the ZipFile class object

as:

f = ZipFile('test.zip', 'w', ZIP_DEFLATED)

Here, 'f' is the ZipFile class object to which test.zip file name is passed. This is

the zip file that is created finally. The next step is to add the filenames that are to

be zipped, using write() method as:

f.write('file1.txt')

f.write('file2.txt')

Python program to compress the contents of files

 from zipfile import *

 f = ZipFile('test.zip', 'w', ZIP_DEFLATED)

 f.write('file1.txt')

 f.write('file2.txt')

 f.write('file3.txt')

 print('test.zip file created...')

 f.close()

STUDY MATERIAL FOR B.C.A

PYTHON PROGRAMMING

IV - SEMESTER, ACADEMIC YEAR 2022-2023

Page 44 of 53

A Python program to unzip the contents of the files that are available in a

zip file

 #to view contents of zipped files

 from zipfile import *

 #Open the zip file

 z = ZipFile('test.zip', 'r')

 #extract all the file names which are in the zip file

 z.extractall()

STUDY MATERIAL FOR B.C.A

PYTHON PROGRAMMING

IV - SEMESTER, ACADEMIC YEAR 2022-2023

Page 45 of 53

UNIT-V

CONSTRUCTOR

Constructors are generally used for instantiating an object. The task of

constructors is to initialize(assign values) to the data members of the class when

an object of the class is created. In Python the init () method is called the

constructor and is always called when an object is created.

Syntax of constructor declaration:

def init (self):

body of the constructor

Types of constructors:

 Default constructor: The default constructor is a simple constructor

which doesn’t accept any arguments. Its definition has only one argument

which is a reference to the instance being constructed.

 class Student:

 roll_num = 101

 name = "Joseph"

 def display(self):

 print(self.roll_num,self.name)

 st = Student()

 st.display()

Output:

101 Joseph

 Parameterized constructor: constructor with parameters is known as

parameterized constructor. The parameterized constructor takes its first

argument as a reference to the instance being constructed known as self

and the rest of the arguments are provided by the programmer.

 class Student:

 # Constructor - parameterized

 def init (self, name):

 print("This is parametrized constructor")

 self.name = name

 def show(self):

 print("Hello",self.name)

 student = Student("John")

STUDY MATERIAL FOR B.C.A

PYTHON PROGRAMMING

IV - SEMESTER, ACADEMIC YEAR 2022-2023

Page 46 of 53

 student.show()

Output:

INHERITANCE

Types of Inheritance in Python Programming

Types of inheritance: There are five types of inheritance in python programming:

 Single inheritance

 Multiple inheritances

 Multilevel inheritance

 Hierarchical inheritance

 Hybrid inheritance

i. Single inheritance

When child class is derived from only one parent class. This is called single

inheritance. The example we did above is the best example for single

inheritance in python programming.

ii. Multiple Inheritance

When child class is derived or inherited from more than one parent class. This

is called multiple inheritance. In multiple inheritance, we have two parent

classes/base classes and one child class that inherits both parent classes

properties.

iii. Multilevel Inheritance:

In multilevel inheritance, we have one parent class and child class that is

derived or inherited from that parent class. We have a grand-child class that

is derived from the child class. See the below-given flow diagram to

understand more clearly.

iv. Hierarchical inheritance

When we derive or inherit more than one child class from one(same) parent

class. Then this type of inheritance is called hierarchical inheritance.

v. Hybrid Inheritance

This is parametrized constructor

Hello John

STUDY MATERIAL FOR B.C.A

PYTHON PROGRAMMING

IV - SEMESTER, ACADEMIC YEAR 2022-2023

Page 47 of 53

Hybrid inheritance satisfies more than one form of inheritance ie. It may be

consists of all types of inheritance that we have done above. It is not wrong

if we say Hybrid Inheritance is the combinations of simple, multiple,

multilevel and hierarchical inheritance. This type of inheritance is very

helpful if we want to use concepts of inheritance without any limitations

according to our requirements.

POLYMORPHISM

DUCK TYPING PHILOSOPHY OF PYTHON

Duck Typing is a type system used in dynamic languages. For example, Python,

Perl, Ruby, PHP, Javascript, etc. where the type or the class of an object is less

important than the method it defines. Using Duck Typing, we do not check types

at all. Instead, we check for the presence of a given method or attribute.

The name Duck Typing comes from the phrase:

“If it looks like a duck and quacks like a duck, it’s a duck”

Example:

Python program to demonstrate

duck typing

class Specialstring:

def len (self):

return 21

Driver's code

if name == " main ":

string = Specialstring()

print(len(string))

Output:

In this case, we call method len() gives the return value

from __len method. Here __len method defines the property of the

class Special string The object’s type itself is not significant in this we do not

declare the argument in method prototypes. This means that compilers can not

do type-checking. Therefore, what really matters is if the object has particular

attributes at run time. Duck typing is hence implemented by dynamic languages.

https://www.geeksforgeeks.org/type-systemsdynamic-typing-static-typing-duck-typing/

STUDY MATERIAL FOR B.C.A

PYTHON PROGRAMMING

IV - SEMESTER, ACADEMIC YEAR 2022-2023

Page 48 of 53

But now some of the static languages like Haskell also supports it. But, Java/C#

doesn’t have this ability yet.

Example: Now, lets look demonstrates how an object be used in any other

circumstances until it is not supported.

Python program to demonstrate

duck typing

class Bird:

def fly(self):

print("fly with wings")

class Airplane:

def fly(self):

print("fly with fuel")

class Fish:

def swim(self):

print("fish swim in sea")

Attributes having same name are

considered as duck typing

for obj in Bird(), Airplane(), Fish():

obj.fly()

Output:

fly with wings

fly with fuel

Traceback (most recent call last):

File "/home/854855e5570b9ce4a9e984209b6a1c21.py", line 20, in

obj.fly()

AttributeError: 'Fish' object has no attribute 'fly'

In this example, we can see a class supports some method we can modify it or

give them new functionality. Duck-typing emphasis what the object can really

do, rather than what the object is.

STUDY MATERIAL FOR B.C.A

PYTHON PROGRAMMING

IV - SEMESTER, ACADEMIC YEAR 2022-2023

Page 49 of 53

OPERATOR OVERLOADING

Operators work for user-defined types.

For example, the + operator will perform arithmetic addition on two numbers,

merge two lists, or concatenate two strings.

This feature in Python that allows the same operator to have different meaning

according to the context is called operator overloading.

Example: + Operator Overloading

Suppose if we have a class called Complex that represents complex

numbers, we could overload the + operator to add two Complex objects together.

For example,

class Complex:

def init (self, real, imag):

self.real = real

self.imag = imag

add two objects

def add (self, other):

return self.real + other.real, self.imag + other.imag

obj1 = Complex(1, 2)

obj2 = Complex(3, 4)

obj3 = obj1 + obj2

print(obj3)

Output: (4, 6)

In the above example, we have used the + operator to add

two Complex objects a and b together.

https://www.programiz.com/python-programming/operators

STUDY MATERIAL FOR B.C.A

PYTHON PROGRAMMING

IV - SEMESTER, ACADEMIC YEAR 2022-2023

Page 50 of 53

The add () method overloads the + operator to add the real and imaginary

parts of the two complex numbers together and returns a new Complex object

with the resulting values.

The str () method returns a string representation of the complex number in

the form a + bj.

Overloading Comparison Operators

Python does not limit operator overloading to arithmetic operators only.

We can overload comparison operators as well.

Here's an example of how we can overload the < operator to compare two

objects the Person class based on their age:

class Person:

def init (self, name, age):

self.name = name

self.age = age

overload < operator

def lt (self, other):

return self.age < other.age

p1 = Person("Alice", 20)

p2 = Person("Bob", 30)

print(p1 < p2) # prints True

print(p2 < p1) # prints False

Output

True

False

STUDY MATERIAL FOR B.C.A

PYTHON PROGRAMMING

IV - SEMESTER, ACADEMIC YEAR 2022-2023

Page 51 of 53

Function Description

init () initialize the attributes of the object

str () returns a string representation of the object

len () returns the length of the object

add () adds two objects

call () call objects of the class like a normal function

Here,

objects.

The

overloads the operator to compare the age attribute of two

method returns, lt ()

< lt ()

 - if the first object's age is less than the second object's age

 - if the first object's age is greater than the second object's age We

can define similar methods to overload the other comparison operators. For

example,

overload

to overload operator, to

operator and so on. ==

 gt ()

True

 eq () >

False

Python Special Functions

Class functions that begin with double underscore are called special

functions in Python.

The special functions are defined by the Python interpreter and used to

implement certain features or behaviors.

They are called "double underscore" functions because they have a

double underscore prefix and suffix, such as or add ().

Here are some of the special functions available in Python,

 init ()

STUDY MATERIAL FOR B.C.A

PYTHON PROGRAMMING

IV - SEMESTER, ACADEMIC YEAR 2022-2023

Page 52 of 53

Advantages of Operator Overloading

METHOD OVERRIDING

Key features of Method Overriding in Python

These are some of the key features and advantages of method overriding in

Python --

 Method Overriding is derived from the concept of object oriented

programming

 Method Overriding allows us to change the implementation of a function

in the child class which is defined in the parent class.

 Method Overriding is a part of the inheritance mechanism

 Method Overriding avoids duplication of code

 Improves code readability by allowing the use of familiar operators.

 Ensures that objects of a class behave consistently with built-in types and

other user-defined types.

 Makes it simpler to write code, especially for complex data types.

 Allows for code reuse by implementing one operator method and using it

for other operators.

Method Overriding in Python is an OOPs concept closely related

to inheritance. When a child class method overrides (or, provides it's own

implementation) the parent class method of the same name, parameters and return

type, it is known as method overriding.

In this case, the child class's method is called the overriding method and

the parent class's method is called the overridden method.

Method overriding is completely different from the concept of method

overloading. Method overloading occurs when there are two functions with the

same name but different parameters. And, method overloading is not directly

supported in Python.

Parent class: The class being inherited is called the Parent or Superclass.

Child class: The class that inherits the properties and methods of the parent class

is called the Child or Subclass.

https://www.scaler.com/topics/oops-concepts-in-python/
https://www.scaler.com/topics/oops-concepts-in-python/
https://www.scaler.com/topics/python/inheritance-in-python/
https://www.scaler.com/topics/method-overloading-in-python/

STUDY MATERIAL FOR B.C.A

PYTHON PROGRAMMING

IV - SEMESTER, ACADEMIC YEAR 2022-2023

Page 53 of 53

 Method Overriding also enhances the code adding some additional

properties.

Prerequisites for method overriding

There are certain prerequisites for method overriding in Python. They're

discussed below --

 Method overriding cannot be done within a class. So,we need to derive a

child class from a parent class. Hence Inheritance is mandatory.

 The method must have the same name as in the parent class

 The method must have the same number of parameters as in the parent

class.

	UNIT-I INTRODUCTION TO PYTHON
	Features of Python:
	2. Easy to learn
	3. Open Source
	4. High level language
	5. Dynamically typed
	6. Portable
	7. Platform independent
	8. Procedure and Object Oriented
	FLAVORS OF PYTHON
	i. C Python
	ii. J Python
	iii. PyPy
	iv. Iron Python
	v. Ruby Python
	vi. Python xy
	vii. Stockless Python
	viii. Anaconda Python
	Python Virtual Machine
	MEMORY
	Garbage Collector
	Static Memory Allocation – Stack
	Dynamic Memory Allocation – Heap
	Reference Count
	The reference count value increase when −
	COMPARISON BETWEEN C AND PYTHON
	DATA TYPES IN PYTHON
	Numeric data type
	Int data type
	Float data type
	Complex data type:
	SEQUENCES
	list data type
	“SSCASCT”,’TUMKUR’
	“SSCASCT”,’TUMKUR’ (1)
	There are two sub types in sets:
	Frozen set data type
	OPERATORS
	1. Arithmetic Operators:
	3. Logical Operators:
	Membership operators
	UNIT-II INPUT AND OUTPUT:
	If Statements
	Statement # Note that the statement(s) must be indented
	If-else statements
	Nested if statements.
	If_elif_else Statement
	Loops
	The for Loop
	Breaking from loop
	Continue statement
	ARRAYS
	Example of an array containing 5 integers:
	Multi-Dimensional Array
	Example:2D_array
	Output
	Matrix in Numpy
	Slicing String
	STRING AND CHARACTERS
	How String slicing in Python works
	Python slicing can be done in two ways:
	Index tracker for positive and negative index
	Method 1: Using slice() method
	Syntax:
	Example:
	Python String Functions
	FUNCTIONS
	There are two sides to every Python function:
	Defining a Function
	Calling a Function
	RECURSION
	Any recursive function can be divided into two parts.
	Python Tuples
	Example
	Creating a Tuple
	Output:
	UNIT-IV DICTIONARIES:
	Example: (1)
	Operations and methods:
	PASSING DICTIONARY TO FUNCTIONS
	Passing Dictionary as an argument
	Example: (2)
	Output: (1)
	Passing Dictionary as kwargs
	Example 1:
	Output: (2)
	Errors and Exceptions:
	Zero Division Error:
	Overflow Error:
	Import Error:
	Index Error:
	Type Error:
	Indentation Error:
	Syntax errors:
	Run-time error:
	Key Error:
	Value Error:
	Python has many built-in exceptions
	Different types of exceptions:
	Handling Exceptions:
	Syntax: (1)
	FILES
	Text files:
	File Modes in Python:
	f = ZipFile('test.zip', 'w', ZIP_DEFLATED)
	f.write('file1.txt') f.write('file2.txt')
	A Python program to unzip the contents of the files that are available in a zip file
	UNIT-V CONSTRUCTOR
	Syntax of constructor declaration:
	Types of constructors:
	Output: (3)
	Output: (4)
	i. Single inheritance
	ii. Multiple Inheritance
	iii. Multilevel Inheritance:
	iv. Hierarchical inheritance
	v. Hybrid Inheritance
	POLYMORPHISM
	Example: (3)
	Output: (5)
	OPERATOR OVERLOADING
	METHOD OVERRIDING
	Prerequisites for method overriding

